you will get 4 items of the success count.
The hypergeometric probability is listed below:
P(x;n,N,k) = | (kCx) * (N - kCn - x) |
NCn |
Calculate Numerator 1
kCx = | k! |
x!(k - x)! |
32C4 = | 32! |
4!(32 - 4)! |
Calculate k!:
32! = 32 x 31 x 30 x 29 x 28 x 27 x 26 x 25 x 24 x 23 x 22 x 21 x 20 x 19 x 18 x 17 x 16 x 15 x 14 x 13 x 12 x 11 x 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 132! = 2.6313083693369E+35
Calculate x!:
4! = 4 x 3 x 2 x 14! = 24
Calculate (x - k)!:
k - x = 32 - 4 = 2828! = 28 x 27 x 26 x 25 x 24 x 23 x 22 x 21 x 20 x 19 x 18 x 17 x 16 x 15 x 14 x 13 x 12 x 11 x 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1
28! = 3.0488834461171E+29
32C4 = | 2.6313083693369E+35 |
24(3.0488834461171E+29) |
32C4 = | 2.6313083693369E+35 |
7.3173202706811E+30 |
32C4 = 35960
Calculate Numerator 2
N - kCn - x = | (N - k)! |
(N - k - n + x)!(n - x)! |
80 - 32C10 - 4 = | (48)! |
(80 - 32 - 10 + 4)!(10 - 4)! |
48C6 = | (48)! |
(42)!(6)! |
Calculate 6!:
6! = 6 x 5 x 4 x 3 x 2 x 16! = 720
Calculate 48!:
48! = 48 x 47 x 46 x 45 x 44 x 43 x 42 x 41 x 40 x 39 x 38 x 37 x 36 x 35 x 34 x 33 x 32 x 31 x 30 x 29 x 28 x 27 x 26 x 25 x 24 x 23 x 22 x 21 x 20 x 19 x 18 x 17 x 16 x 15 x 14 x 13 x 12 x 11 x 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 148! = 1.2413915592536E+61
Calculate 42!:
42! = 42 x 41 x 40 x 39 x 38 x 37 x 36 x 35 x 34 x 33 x 32 x 31 x 30 x 29 x 28 x 27 x 26 x 25 x 24 x 23 x 22 x 21 x 20 x 19 x 18 x 17 x 16 x 15 x 14 x 13 x 12 x 11 x 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 142! = 1.4050061177529E+51
48C6 = | 1.2413915592536E+61 |
720(1.4050061177529E+51) |
48C6 = | 1.2413915592536E+61 |
1.0116044047821E+54 |
48C6 = 12271512
Calculate Denominator
NCn = | N! |
m!(N - m)! |
80C10 = | 80! |
10!(80 - 10)! |
Calculate N!:
80! = 80 x 79 x 78 x 77 x 76 x 75 x 74 x 73 x 72 x 71 x 70 x 69 x 68 x 67 x 66 x 65 x 64 x 63 x 62 x 61 x 60 x 59 x 58 x 57 x 56 x 55 x 54 x 53 x 52 x 51 x 50 x 49 x 48 x 47 x 46 x 45 x 44 x 43 x 42 x 41 x 40 x 39 x 38 x 37 x 36 x 35 x 34 x 33 x 32 x 31 x 30 x 29 x 28 x 27 x 26 x 25 x 24 x 23 x 22 x 21 x 20 x 19 x 18 x 17 x 16 x 15 x 14 x 13 x 12 x 11 x 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 180! = 7.1569457046264E+118
Calculate n!:
10! = 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 110! = 3628800
Calculate (N - n)!:
70! = 70 x 69 x 68 x 67 x 66 x 65 x 64 x 63 x 62 x 61 x 60 x 59 x 58 x 57 x 56 x 55 x 54 x 53 x 52 x 51 x 50 x 49 x 48 x 47 x 46 x 45 x 44 x 43 x 42 x 41 x 40 x 39 x 38 x 37 x 36 x 35 x 34 x 33 x 32 x 31 x 30 x 29 x 28 x 27 x 26 x 25 x 24 x 23 x 22 x 21 x 20 x 19 x 18 x 17 x 16 x 15 x 14 x 13 x 12 x 11 x 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 170! = 1.197857166997E+100
80C10 = | 7.1569457046264E+118 |
3628800(1.197857166997E+100) |
80C10 = | 7.1569457046264E+118 |
4.3467840875987E+106 |
80C10 = 1646492110120
Calculate Probability
P(4;10,80,32) = | 35960 x 12271512 |
1646492110120 |
P(4;10,80,32) = | 441283571520 |
1646492110120 |
P(4;10,80,32) = 0.268
You have 1 free calculations remaining
Calculate the mean μ:
μ = | nk |
N |
μ = | 10 x 32 |
80 |
μ = | 320 |
80 |
μ = 4
Calculate the variance σ2
σ2 = | nk(N - k)(N - n) |
N2(N - 1) |
σ2 = | (10)(32)(80 - 32)(80 - 10) |
802(80 - 1) |
σ2 = | (320)(48)(70) |
6400(79) |
σ2 = | 1075200 |
505600 |
σ2 = 2.1266
Calculate the standard deviation σ:
σ = √σ2
σ = √2.1266
σ = 1.4583
What is the Answer?
P(4;10,80,32) = 0.268
How does the Hypergeometric Distribution Calculator work?
Free Hypergeometric Distribution Calculator - Calculates the probability of drawing x objects out of a subgroup of k with n possibilities in a total group of N using the hypergeometric distribution.
This calculator has 4 inputs.
What 3 formulas are used for the Hypergeometric Distribution Calculator?
P(x;n,N,k) = (kCx) * (N - kCn - x)/NCnμ = nk/N
σ2 = nk(N - k)(N - n)/N2(N - 1)
For more math formulas, check out our Formula Dossier
What 10 concepts are covered in the Hypergeometric Distribution Calculator?
combinationa mathematical technique that determines the number of possible arrangements in a collection of items where the order of the selection does not matternPr = n!/r!(n - r)!distributionvalue range for a variableeventa set of outcomes of an experiment to which a probability is assigned.factorialThe product of an integer and all the integers below ithypergeometric distributiondiscrete probability distribution that describes the probability of k successes (random draws for which the object drawn has a specified feature) in ndraws, without replacementmeanA statistical measurement also known as the averagepermutationa way in which a set or number of things can be ordered or arranged.
nPr = n!/(n - r)!probabilitythe likelihood of an event happening. This value is always between 0 and 1.
P(Event Happening) = Number of Ways the Even Can Happen / Total Number of Outcomesstandard deviationa measure of the amount of variation or dispersion of a set of values. The square root of variancevarianceHow far a set of random numbers are spead out from the mean
Hypergeometric Distribution Calculator Video
Tags:
Add This Calculator To Your Website
ncG1vNJzZmivp6x7rq3ToZqepJWXv6rA2GeaqKVfncaxs8SoZamgoHS7foSPX6R2Y2Flc6yJkmtdsXVbaXOxuJyJX5FjVWiRbLeI